Tangent Bundle of Pseudo-sphere and Ruled Surfaces in Minkowski 3-space
نویسندگان
چکیده
منابع مشابه
Ruled W - Surfaces in Minkowski 3 - Space
In this paper, we study a spacelike (timelike) ruled W-surface in Minkowski 3-space which satisfies nontrivial relation between elements of the set {K, KII , H, HII}, where (K,H) and (KII , HII) are the Gaussian and mean curvatures of the first and second fundamental forms, respectively. Finally, some examples are constructed and plotted.
متن کاملCharacterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملOn Non-developable Ruled Surfaces in Lorentz-minkowski 3-spaces
In this paper, we classify ruled surfaces in Lorentz-Minkowski 3-spaces satisfying some algebraic equations in terms of the second Gaussian curvature, the mean curvature and the Gaussian curvature.
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملOn the evolute offsets of ruled surfaces in Minkowski 3-space
In this paper, we classify evolute offsets of a ruled surface in Minkowski 3-space L with constant Gaussian curvature and mean curvature. As a result, we investigate linear Weingarten evolute offsets of a ruled surface in L .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: General Letters in Mathematics
سال: 2018
ISSN: 2519-9269,2519-9277
DOI: 10.31559/glm2018.5.2.1